Collision avoidance using neural networks
نویسندگان
چکیده
منابع مشابه
Reactive Collision Avoidance using Evolutionary Neural Networks
Collision avoidance systems can play a vital role in reducing the number of accidents and saving human lives. In this paper, we introduce and validate a novel method for vehicles reactive collision avoidance using evolutionary neural networks (ENN). A single front-facing rangefinder sensor is the only input required by our method. The training process and the proposed method analysis and valida...
متن کاملCollision Avoidance Using Neural Networks Learned by Genetic Algorithms
As Air Traac keeps increasing, many research programs focus on collision avoidance techniques. In this paper, a neural network learned by genetic algorithm is introduced to solve connicts between two aircraft. The learned NN is then tested on diierent connicts and compared to the optimal solution. Results are very promising. 1 Air Traac Control and Collision Avoidance As Air Traac keeps increas...
متن کاملrodbar dam slope stability analysis using neural networks
در این تحقیق شبکه عصبی مصنوعی برای پیش بینی مقادیر ضریب اطمینان و فاکتور ایمنی بحرانی سدهای خاکی ناهمگن ضمن در نظر گرفتن تاثیر نیروی اینرسی زلزله ارائه شده است. ورودی های مدل شامل ارتفاع سد و زاویه شیب بالا دست، ضریب زلزله، ارتفاع آب، پارامترهای مقاومتی هسته و پوسته و خروجی های آن شامل ضریب اطمینان می شود. مهمترین پارامتر مورد نظر در تحلیل پایداری شیب، بدست آوردن فاکتور ایمنی است. در این تحقیق ...
An acquisition of operator's rules for collision avoidance using fuzzy neural networks
The procedure for acquiring control rules to improve the performance of control systems has received considerable attention recently. This paper deals with a collision avoidance problem in which the controlled object is a ship with inertia which must avoid collision with a moving object. It has proven to be difficult to obtain collision avoidance rules, i.e., steering rules and speed control ru...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IOP Conference Series: Materials Science and Engineering
سال: 2017
ISSN: 1757-8981,1757-899X
DOI: 10.1088/1757-899x/263/5/052041